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Abstract

Congestion control tries to answer the question: \At what rate should a sender transmit data under

current network conditions?" While answering this question is suÆcient to maximize the goodput of

traditional bulk data streams, emerging multimedia applications generate heterogeneous data streams

where di�erent frames have di�erent quality of service requirements in terms of priority, deadlines,

and inter-frame dependence. Consequently, the goodput of a multimedia stream depends not only on

answering the above question, but also the question \Which packets should the sender transmit given

its current transmission rate?" In this paper, we make the case that the \goodput control" mechanisms

that answer this question should be considered as a critical component of future multimedia transport

protocols.

We present an objective de�nition of goodput at the transport layer, and show that optimizing this

goodput function has exponential complexity in the general case. We then present a set of simple online

packet dropping algorithms that can be used at the sender side in order to approximate the optimum

within a bounded ratio, and show that our goodput control mechanisms also help to improve application

level reception quality for the 
ow.

1 Introduction

Emerging multimedia applications generate data streams that have signi�cantly more complex characteris-

tics than traditional bulk data applications. Consider a multimedia streaming application that requires the

transmission of an MPEG video stream from a server to a client. The server and client exchange control

packets that must be delivered reliably, and the MPEG video stream contains I-, P-, and B-frames that are

prioritized and possibly deadline bounded. Further, there are dependencies across the frames: a P-frame

depends on the preceding I-frame, while a B-frame depends on the preceding and following non B-frames.

To summarize, multimedia applications generate heterogeneous data streams wherein frames/packets have

diverse quality of service (QoS) requirements in terms of reliability, deadline, utility, and inter-frame de-

pendency.

What are the special requirements that heterogeneous data streams impose on the underlying data

transport mechanisms? In traditional bulk data transfer applications such as ftp, the transport must pro-

vide rate control and support reliable and sequenced delivery of packets { all packets are equally important,

and the timeliness of delivery is not critical. Therefore the transport protocol must determine the sustain-

able sending rate for a connection (i.e., perform rate control), and then send packets in sequence while

making sure that lost packets are retransmitted (i.e., enforce reliability). However, for the heterogeneous

data streams under consideration, timeliness of data delivery may be critical { packets that arrive after

their deadline are useless at the receiver. Therefore, the data transport mechanisms must perform rate

control as before, but send only the \most useful" packets that can be delivered at the sustainable sending

rate. In other words, the transport must transmit the highest utility packets that satisfy their deadline and

dependency requirements in order to maximize the \goodput" (or broadly speaking, aggregate utility) of the

heterogeneous data stream at the receiver.
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Comparing the requirements of \homogeneous" and \heterogeneous" data streams, we see that the

data transport mechanisms must consider two questions:

1. At what rate must the sender transmit packets given the current network conditions? This is the

standard rate control problem, and has been extensively addressed for both reliable and unreliable

data streams in related literature [3, 5, 7, 10]. In this work, we use a rate control mechanism that is

TCP-friendly and stable, similar to the work in [5], and we will not address this issue further.

2. Which packets should the sender transmit, given the current transmission rate and packets in the

send bu�er? While the answer to this question is straightforward for homogeneous data streams

(transmit the next packet in sequence), it is non-trivial for heterogeneous data streams because it

depends on the relative values of the application sending rate and the transport sending rate, the

QoS requirements of the packets in the bu�er, and which packets have already been transmitted (in

order to take into account the dependency requirements across frames). In short, di�erent packets in

the same stream have di�erent utilities, and the transport needs to implement a set of mechanisms

for selecting packets for transmission such that the aggregate utility of the received packets at the

receiver is maximized.

We call this set of mechanisms goodput control in this paper, and make the case that data transport

for multimedia streams must provide goodput control as an integral part of the systems support for

multimedia application designers1.

It is now widely accepted that rate control must be a part of transport protocols designed to

support both reliable and unreliable 
ows . The current approach for multimedia system design calls for

multimedia applications to sit on top of rate-controlled unreliable transport, receive rate and delay feedback

periodically, and then adapt within the application to the dynamics of the connection.

In this paper, we consider a di�erent model. We concur with conventional wisdom that the ap-

plication best knows the QoS metrics of its frames. Thus, we believe that the responsibility of assigning

QoS requirements in terms of reliability, utility, deadline, and dependency constraints must remain with

the application. On the other hand, once the QoS requirements of a frame are speci�ed by the application,

we argue that the \goodput control" mechanisms which maximize the perceived utility of the stream at

the receiver can be best implemented in the data transport/middleware outside of the application. This

approach provides for a clean separation between application-speci�c QoS policies (which are set and con-

trolled by the application) and the general mechanisms that are used to implement these QoS policies

(which are provided by the data transport).

In this paper, we make the case for considering goodput control as a fundamental component of

multimedia transport as opposed to a part of the application, motivated by three reasons. First, it makes

writing multimedia applications much simpler, because the application designer only needs to think about

the policy-level issues and not the mechanisms for achieving e�ective adaptation to rate/delay 
uctuations.

Second, it makes the modeling of, and structured reasoning about, goodput control easier if these mecha-

nisms constitute a separate component and are not wrapped into the application. Third, �ne-grained inter-

action between the rate control and goodput control can improve the aggregate utility of the transmitted

stream under network dynamics. Motivated by both the eÆcacy of the mechanisms and the convenience of

writing applications, we argue for the approach wherein the application sends a heterogeneous data stream

at its \desired sending rate" with per-frame QoS speci�cations, and the transport provides the mechanisms

for rate control and goodput control to maximize the aggregate utility of the heterogeneous data stream.

Our initial experimentation shows that maximizing the objective goodput control metric at the transport

level also leads to improved perceptual quality of the data stream at the application level.

1For much of this paper, we will not distinguish between the transport layer and the middleware that sits between the

transport and the application, generically using the term \data transport mechanisms" to refer to both. In Section (), we will

discuss trade-o�s between placing the goodput control mechanisms within the transport protocol as opposed to the middleware.
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The rest of the paper is organized as follows. Section 2 presents the network model and the

framework for goodput control. Section 3 describes the model for optimal goodput control and a set

of simple bu�er management mechanisms that approximate the optimal model. Section 4 evaluates the

goodput control mechanisms for three di�erent types of application-level coding schemes: motion JPEG,

MPEG, and 3DSPIHT. Section 5 discusses some unresolved issues and concludes the paper.

2 Model and Framework
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Figure 1: Framework for Goodput Control. Figure (a) positions goodput control in the protocol stack.

Figure (b) shows the key components of goodput control. The goodput control mechanisms described in

this paper provide QoS-aware packet dropping in the sender side bu�er.

Figure 1.a positions goodput control in context. As a part of neneric data transport, we con-

sider three functions: framing, goodput control, and rate control. The application deals with frames and

frame-speci�c QoS policies. The framing component provides frame-to-packet segmentation/reassembly,

translation of frame-to-packet QoS, and partial reliability. The rate control component provides estimates

of the rate and delay for the connection. Goodput control bridges the potential rate mismatch between the

application sending rate and the transport sending rate by determining which packets to send and which

packets to drop at the source. The �rst order of business is to determine what the goodput control mech-

anisms are, and how they can e�ectively use the application-speci�ed QoS parameters of frames/packets

in order to maximized the aggregate received utility at the receiver. The second order of business is to

determine how to structure the three components, i.e. which components belong to the transport layer and

which belong to middleware. For simplicity of discussion, we will initially assume that goodput control is

a part of a transport protocol such as HPF [6], and then revisit the structural trade-o�s in Section 5.

In the rest of this work, we will assume the following: (a) a higher layer already has performed the

frame-to-packet translation (so the goodput control component deals only with packets) and (b) a lower

layer performs rate control and provides the goodput control component with short term and long term

running averages of rate and round trip time estimates. In all our simulations and analytical evaluation,

we use the standard additive increase-multiplicative decrease rate control algorithm, similar to the imple-

mentation in RAP [5]. Figure 1.b. shows the three aspects to goodput control: bu�er management at

the sender, rate and delay feedback, and bu�er management at the receiver. Packets 
ow into the sender

bu�er at a rate of rapp send, and are drained at a rate of rinst
2. The rate control component provides the

2All rates are time dependent, though we drop the time dependence for convenience of notation.

3



sender side bu�er manager with the short-term average rate rsavg, the long-term average rate rlavg, and

the smoothed round trip time rtt. If the application is adaptive, then it may periodically probe the lower

layer for rlavg and adjust rapp send accordingly. The bu�er size at the sender is B. At the receiver, packets

arrive into the receiver bu�er and are drained from the receiver bu�er at a rate of rapp recv. Our focus is

on the set of packet dropping mechanisms at the sender bu�er that bridge the potential rate mismatch

between the application and the network in a way that maximizes the goodput of the 
ow, which we now

formally describe below.

2.1 Conditional Utility and the Goodput Control Objective

Let us consider a multimedia application that generates a multi-resolution image/video stream.Eeach

packet i is associated with a \utility" u(i) and length l(i). For applications with real-time constraints,

each packet may be associated with a \deadline" d(i) by which it must be delivered. Finally, there are

dependencies between data packets. In other words, a packet i is useful at the receiver only if the receiver

also receives the set of packets D(i). We abstract these QoS characteristics of a packet by means of a

conditional utility v(i), de�ned as follows:

v(i) =

8
><
>:

0 9 packet j 2 D(i), j is not received at the receiver

0 packet i is predicted to miss its deadline d(i)

u(i) otherwise

Conditional utility captures the requirements that a packet must be received before its deadline3, and that

all the packets on which it depends must also be received. Given this de�nition of conditional utility, we

de�ne the \goodput" G[t1; t2] of a heterogeneous data stream over a time window [t1; t2] as

G =
X

i2S[t1;t2]

v(i); (1)

where S[t1; t2] is the sequence of packets that is transmitted in the time window. The goodput control

problem is thus an optimization problem: maximize G[t1; t2] for a desired time window [t1; t2] such that

X

i2S[t1;t2]

l(i) �
t2X

t=t1

r(t) ��t (2)

where the rate r(t) adapts in discrete time intervals of �t, a packet is eligible for transmission only after it

arrives at the send bu�er, and the sequence S[t1; t2] is a subsequence of the sequence of transmissions from

the application layer. In essence, the goal is to choose the sequence of transmissions S[t1; t2] in a way that

maximizes the aggregate conditional utility at the receiver. Note that in this problem formulation, we do

not consider losses in the network in the ideal model (i.e. every packet that is selected for transmission is

optimistically expected to be received at its destination)4. Of course, in the practical instantiations of the

mechanisms and in evaluation, we do not make this assumption.

Let us now consider how the utility and dependency relations are speci�ed by the application. u is

an application-speci�c utility function, and D is an application-speci�c dependency relationship between

frames. The precise mapping between the application-level perceptual usefulness of a frame and its utility

assignment is beyond the scope of the paper. However, in the evaluation section, we use the PSNR

metric for assigning per-frame utility. Dependency across frames is inherent to the structure of the coding

3Decision is made on the sender side based on the estimated RTT and estimated 
ow rate. The deviation of the actual

delay from estimated RTT is ignored in the theoretical analysis but considered in the simulation
4While it is possible to account for network losses using a multiple description-based forward error correction below the

goodput control layer, in this work we assume an idealized network model that does not drop packets so long as the sender

does not violate its rate estimate.
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scheme which is faithfully re
ected in the inter-packet dependency. We consider three coding schemes in

our evaluation to demonstrate the generality of the goodput control work: Motion JPEG, MPEG, and

3D-SPIHT. We see in our evaluation that maximizing the objective goodput function in the transport

also generally achieves higher PSNR on the receiver side and the perceptual quality of the stream in the

application is also improved.

3 Goodput Control Mechanisms

In Section 2, we presented a high-level overview of the optimization criterion, viz. select S[t1; t2] to

maximize
P

i2S[t1;t2] v(i) such that the transmission of the packets in S does not violate the rate bound of

the connection. In this section, we �rst explore the detailed ideal model of goodput control; then we show

that goodput maximization with deadline and dependency constraints is exponential in nature; then we

investigate a simple greedy solution that achieves the best known competitive ratio with respect to the

optimum. The result of our work is that we propose a very simple set of online packet dropping mechanisms

that e�ectively approximate goodput optimization.

3.1 Ideal Goodput Control

Each packet i has a utility u(i), length l(i), deadline d(i), and dependency relationship D(i), where D(i) is

a set of preceding packets on which it depends. Let us �rst consider a simple o�ine version of the goodput

control problem wherein the task is to determine at time t1 which packets from the queue to select for

transmission in a time window [t1; t2], with �xed connection rate of r at time in [t1; t2] and no further

arrivals after t1. First, let us simplify the problem further, and assume that 8i; d(i) =1 and D(i) = �.

Then this problem reduces to the 0-1 Knapsack problem, and has a well known dynamic programming

solution in O(NQ � r � (t2 � t1)) time where NQ is the number of packets in the sender bu�er Q. The

key point to note is that the 0-1 Knapsack problem satis�es the optimal substructure property (i.e. partial

solutions of the optimal solution are also optimal) { hence, dynamic programming is a valid approach for

solving this problem. Let us now generalize this approach to account for deadlines and dependencies.

We de�ne the recursive relation for the goodput control problem as follows:

G[Q] = maxjfvS(Q�fj�g)(j) +G[Q� fjg]g (3)

j
� = arg maxjfvS(Q�fj�g)(j) +G[Q� fjg]g (4)

S(Q) = fj�g [ S(Q� fj�g) (5)

feasible S(Q� fj�g)) feasible S(Q) (6)

where G[Q] is the optimal goodput considering the set of packets Q, S(Q) is the subsequence of packets

selected for transmission from the set of packets Q, and vS(i) is the conditional utility of packet i given

that a sequence S has already been selected for transmission.

Essentially, the above dynamic programming problem setup yields a correct solution if the recursive

relationship for G[Q] and the feasibility condition for S(Q) hold. Under such circumstances, we can obtain

a simple polynomial time optimal solution for goodput.

Unfortunately, when we introduce deadlines, then the feasibility condition may be violated because

adding a packet j� to the transmission sequence in any iteration of the solution may violate the deadline

of some previously chosen packet in S(Q� fj�g) that follows j� in the sequence of transmissions.

Further, when we introduce dependencies, the optimal substructure property may be violated

because S(Q� fjg) may depend on whether j is selected or not in S(Q). In other words, adding a packet

5



to the transmission sequence may change the optimal transmission subsequence chosen thus far, because

it can enable the transmission of other packets that were not hitherto considered.

To summarize, the optimal substructure property is violated when we introduce both deadline and

dependency constraints, and consequently the solution moves from a polynomial time to an exponential

time computation. We will discuss this issue more precisely in the �nal paper.

3.2 Goodput Control Mechanisms under Some Simpli�cations

Given the fact that the goodput maximization algorithm is exponential without restrictions on how the

u(i), l(i), d(i) and D(i) are speci�ed, we investigate what the time complexity of the goodput maximization

algorithm would be if the u(i), l(i), d(i) and D(i) observe some simple relations.

We represent the packet dependency via a the digraph Gr = (V;E) the nodes in set V are all the

packets in the queue Q. Ordered pair (i; j) 2 E if packet j depends on packet i. Packet i depends on

packet l explicitly or implicitly if there exists a path from l to i and no such k such that (k; i) 2 E and

(j; k) 2 E. Let P (i) be the set of nodes which depends on node i explicitly or implicitly.

Let the \utility per bit" of packet i be w(i), w(i) = u(i)=l(i).

Proposition 3.1 If packet i has w(i) larger than that of any packets depending on itself, then

w(i) >

P
k2SP (i) u(k)P
k2SP (i) l(k)

(7)

the average utility per bit for any subset SP (i) of P (i).

If the deadline d(i) is not 1 but can be any arbitrary value, the feasible condition of S(Q) is not

guaranteed even with the assumption of Proposition 3.1. Hence the time complexity of the optimal solution

is still exponential. We has considered heuristic approximation in the following section.

3.3 Practical Goodput Control Mechanisms - Selecting Algorithm

In this section we proposed a greedy algorithm to approximate the optimal result whose output has the

lower bound of log(maxU

minU
� maxl

minl
).5. The algorithm has no assumption about the utility function and dead-

line. Step 1: Let Set I  fall the packets which don't depend on other packetsg.

Step 2: Pick the packet P (i) in I with largest bit utility w(i) and satisfy the deadline constrict.

Step 3: Add the packets whose dependent packet are already selected to the set I.

Step 4: Remove the packets which miss the deadline and all their dependency from I.

Step 5: If I is empty, the algorithm terminates. Otherwise it goes to Step 2.

The idea is always to pick the packet with largest bit utility w(i) under the constraints that it is

within its deadline bound and its transmission won't make the packets already picked miss the deadline.

Those packets already picked have higher w(i) than itself.

3.4 Practical Goodput Control Mechanisms - Dropping Algorithm

While we have the selecting algorithm for the goodput, this is not good for the online algorithm since

it assume no further arrival. Here we propose an online dropping algorithm which is equivalent to the

5We will give the proof in the �nal paper
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previous algorithm in the online case but is more amenable to online adaptation. We also prove in next

section that the output sequence of the two algorithm are the same for the o�ine scenario. We consider a

suite of 4 packet dropping algorithms here.

1. Discard packets that are not \useful" to the receiver.

(a) Deadline drop: Discard a packet that is predicted to violate its deadline by the time it is received

at the receiver.

(b) Dependency drop: Discard a packet for which the sender has already discarded some packet on

which it depends (e.g. discard a B-frame packet whose preceding P-frame has been dropped).

2. Preferentially discard lower utility packets in favor of sending higher utility packets.

(a) Utility drop: When the sender bu�er is full, discard queued packets with lower normalized utility

in favor of incoming packets with higher normalized utility, where we de�ne \normalized utility"

of packet i as u(i)=l(i) (i.e. utility per-bit).

(b) Anticipated deadline drop: If a packet with higher normalized utility is predicted to miss its

deadline, but discarding one or more packets with lower normalized utility preceding it in the

sender bu�er will enable the packet to meet its deadline, then discard those lower normalized

utility packets.

3.5 The equivalence of selecting and dropping algorithm

As we have seen above, the selecting algorithm is used to derive the lower bound of the goodput but the

we propose to use the dropping algorithm in practice because of its simplicity. Here we will prove in fact,

these two algorithms have the same output sequence for o�ine operation. Hence the dropping algorithm

has the same competitive ratio.

Proposition 3.2 For any given queue, the dropping algorithm and the selecting algorithm have the same

output sequence.

Proof: (by induction).

step 1: Considering the packet P1 with the highest bit utility w(1) in the queue, the selecting algorithm

selects it �rst and gurantees it can be transmitted by checking the lately selected packet not to make this

packet miss the deadline. The dropping algorithm scan the queue and when it scans P1 it will drop some

packets before P1 if necessary because P1 has the highest bit utility. The only case that P1 can't be included

in the output sequence is that even P1 being sent immediately it will still miss the deadline. In this case

P1 can't be included in both case. Then the packet with the second highest bit utility is considered and

either all the packets in the queue miss the deadline or the same packet in the time bound with highest

bit utility is included in the output sequence of both algorithms.

step 2: Assuming the packets of 1st to kth highest bit utility of the output sequence are the same for

the two algorithm, we claim the (k + 1)th highest packet are also the same. Considering the (k + 1)th

highest packet P s

k+1 of the selecting algorithm, any packets in the queue with bit utility function between

P
s

k+1 and fP1; :::; Pkg can't be selected because they will make at least one packet of fP1; :::; Pkg miss the

deadline. The dropping algorithm also has to satisfy this constaint so it can't do better than selecting

algorith. Furthermore when scanning P s

k+1 it will drop some packets with lower bit utility before P s

k+1 if

necessary to make P s

k+1 to be within the deadline. This will succeed because even when all the fP1; :::; Pkg

precede P s

k+1, P
s

k+1 is guranteed transmitable by selecting algorithm. When droppong algorithm scanning

the packets following the P s

k+1, it won't drop P
s

k+1 to make room for packets which has higher bit utility

than P
s

k+1. So P
d

k+1 is the same as P
s

k+1. This conclude the proof.
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3.6 Anticipated deadline drop
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Figure 2: Anticipated Deadline Drop. Figure (a) shows the data structures. Each packet is labeled with

its deadline. The slack denotes the available slack for the packet (slack of -1 causes either the packet to be

dropped, or anticipated deadline drop). We also show the updated state of the send[] and dropped[] arrays

as we traverse the queue. Figures (b), (c), and (d) show the evolution of the queue and the actions of the

anticipated deadline drop as four packets with di�erent priority and deadline arrive.

We now consider the case of a data stream with multiple priorities and packet deadlines. In this

case, suppose a high priority packet is predicted to miss its deadline, but there are enough lower priority

packets preceding it such that dropping them will cause the high priority packet to make its deadline, then

the anticipated deadline drop mechanism will delete the preceding lower priority packets to make room for

the following high priority packet. Figure 2 illustrates a sequence of scenarios, and Figure 3 speci�es the

pseudocode.

Anticipated deadline drop can be accomplished with a two-pass algorithm through the send queue.

In the �rst pass, we scan the queue in order to determine how many packets in each layer must be dropped

to make room for following higher priority packets to meet their deadlines. In the second pass, we drop

the designated number of packets from the head of each priority level.

The space complexity of this algorithm is O(p) for p priority levels, since we need to maintain two

arrays { sent[level] and dropped[level] { in the algorithm in Figure 3. Anticipated deadline drop is invoked

under two circumstances: (a) when a packet is enqueued, and (b) when the connection parameters have

changed beyond a threshold value since the last invocation of the anticipated deadline drop. The time

complexity for case (a) is O(p) (since we only need to perform the two-pass algorithm for the incoming

packet), and the time complexity for case (b) is O(np).

3.7 Dependency drop

As we have described before, frames in a heterogeneous data stream may have application-speci�c depen-

dencies. At the receiver, a frame cannot be usefully received unless the frames on which it depends have

also been usefully received. The motivation for dependency drop is to discard the packets of a frame at
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sent[levels] : number of packets sent
for this priority level

dropped[levels] : number of packets dropped
for this priority level

total : total number of packets sent
max_level : number of priority levels

FIRST PASS:

while (p)
allow = (p.deadline - now - rtt) / rate
before = sum(i: p.level to max_level) sent[i] ; head drop
if total <= allowed ; enough slack, accept

sent[p.level] ++
total ++

else
if before < total - allowed ; not enough slack, discard

mark p
else ; must discard lower priority packets to accept

to_drop = total - allowed ; number of lower priority
j = max_level ; packets to drop
while (to_drop > 0)

drop_at_level -= min{sent[j], to_drop}
to_drop -= drop_at_level
sent[j] -= drop_at_level
dropped[j] += drop_at_level
j --

sent[p.level] ++
total = allowed + 1 ; equal to total-to_drop+1

next p

SECOND PASS:

total_drops = sum(i:0 to levels) dropped[i]
while (total_drops > 0)

if dropped[p.level] > 0 and p unmarked
mark p
dropped[p.level] --
total_drops --

next p

Figure 3: Pseudocode for the Anticipated Deadline Drop Mechanism

source if the sender knows that any of the frames on which this frame depends have not been usefully

received at the receiver.

Providing dependency drop requires the transport protocol to understand the in-built application

structure of the data stream, and the description of dependency drop in this section is necessarily more

closely coupled to the speci�c transport protocol implementation as compared to previous mechanisms.

One of the more interesting uses of inter-frame dependency is to emulate layering. A \layer" in

our model is simply a dependency chain. If the application does not want to adapt frequently, it can

simple \chain" a sequence of frames that belong to a \layer". Once a frame in the layer is dropped,

subsequent frames in the layer will also be dropped. The chain must be broken periodically to enable the

\join" experiment for the layer. Using this approach, we can emulate layering and bound the frequency of

adaptation for applications that do not wish to have frequent quality 
uctuations. It turns out that we can

emulate �ner granularity adaptation than layering. For example, by chaining every n
th frame in a layer

(and having n such chains), we can essentially enforce adaptation at the granularity of 1=nth of a layer.

Thus, dependency allows the application to control the frequency and granularity of adaptation.

4 Simulation and Analysis

We now present an evaluation of the goodput control mechanisms through simulation and analysis. First,

we present two adaptation mechanisms that are commonly used in the practice. That will further movivate

the necessity of goodput control. Second, we present the results for Progressive Motion JPEG and charac-

terize the utility among packets within one frame. Third, using the MPEG trace from Bellcore, we show

an example to characterize the utility across di�erent frames in one GOP and formularize the relationship

between deadline and bu�er size. Finally, we evaluate in detail every component in goodput control and

show that network characteristic does not a�ect the functionality of goodput control.

4.1 Goodput Control versus Application-Level Adaptation

In this experiment, we compare goodput control with application-level adaptation, and understand the

trade-o�s involved.
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Sender Expected Observed Frame Useful PSNR
� deadline priority I P B miss

rate rate sent frame
� (db) drop drop frame frame frame deadline

�

1 1000 1147.98 28684 28675 32.34 5 1376 1879 5638 21181 0

2 1000 1057.63 26596 26328 31.61 452 3071 1839 5477 19064 36

3 1000 960.73 24008 23882 30.88 227 5958 1863 5540 16603 29

4 900 888.27 22309 22178 30.53 188 7554 1858 5522 14838 106

5 1000 899.76 22571 22412 30.57 431 6836 1865 5492 15263 10

6 1000 877.07 22050 21779 30.35 477 7403 1850 5463 14616 19

7 1000 1011.26 25147 24880 31.34 284 4808 1865 5584 17469 51

8 1000 988.45 25086 24730 31.29 301 4862 1862 5578 17399 46

9 1200 1200.03 29990 29989 32.72 0 0 1875 5623 22492 0

10 1200 1200.95 30004 30001 32.72 0 0 1876 5625 22503 0

11 1200 1199.70 29978 29977 32.72 0 0 1874 5621 22483 0

Table 1: Results of experiment on topology in Figure . (The superscript * is measured at receiver side. The rate

has unit Kbps.)

we present the simulation results for goodput control in a randomly generated network con�guration

composed of 7 backbone links with di�erent link bandwidths and latencies, and 11 connections as shown

in Figure 5. Note that the goodput control mechanisms are not a�ected by the network characteristic as

we will show in the Section 4.3.

All the 11 application senders send MPEG traÆc at constant bit rate with 16 frames per group of

picture (GOP). Each GOP has one I frame, three P frames, and 12 B frames with one packet per frame.

P frames depend on preceding I frames while B frames depend on preceding and following non B frames.

The aggregate rate for each sender is 1.2Mbps. 11 CBR connections share the available bandwidth as

follows. The bandwidth of S4 is limited by the bandwidth of the global bottleneck link from node 5 to R4.

Connections S1, S2, S3, S5, and S6 share the link 4-5 with constrained connection S4. On the other hand,

connection S9 and S11 share the link 2-4 with connection S6. Since the bandwidth of S6 was constrained by

link 4-5, connections S9 and S11 shared the remaining bandwidth which makes the R9 and R11 receive all

the CBR frames. Connections S7 and S8 share link 1-2, which is the bottleneck link on their paths. Since

S10 shares the link 2-3 only with connection S7 and S8, whose transmission rate where already constrained

by link 1-2, it gets all the remaining bandwidth of link 2-3.

10



Table 1 shows the results for the experiment using goodput control mechanisms and the additive

increase-multiplicative decrease rate control algorithm. Note that, in column 5, we introduce a notion of

utility called \useful frame". Because of the inter-frame dependency in MPEG, utility can be de�ned to

be the number of decodable frames that satisfy the dependency constrain at the receiver. As we can see

in the column 5 and 6, it is closely related to PSNR value. Thus, we use the \useful frame" as a looser

notion of metrics to measure the quality. From this point on, we present MPEG test in term of useful

frame instead of PSNR for simplicity.

To see the impact of goodput control, we also perform the same experiment, but with two other ap-

plication behaviors: (a) adaptive application with additive increase and loss proportional decrease(LIPD):

the application will change its CBR rate based on monitoring the connection progress, and send at the peak

estimated rate, and (b) adaptive application with additive increase and multiplicative decrease(LIMD): the

application will change its CBR rate according to an additive increase multiplicative decrease algorithm

based on monitoring the connection progress. Figure 6 compares goodput control versus the former sce-

nario, while Figure 7 compares goodput control versus the latter scenario. In both cases, we test with

di�erent adaptation intervals for the application.
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Figure 6: Goodput Control versus LIPD Adap-

tive Application over UDP
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Figure 7: Goodput Control versus LIMD Adap-

tive Application over UDP

From Figure 6, we see two results:

1. The adaptive application is far more aggressive (in a non-TCP friendly manner) and sends 17% to

5% more packets than the goodput control case, but useful frames received is 21.5% to 4.6% less

than that in goodput control case. Speci�cally, the goodput control application sends 11.8% more I

frames, and 11.4% more P frames, even for the best case adaptation. In words, sending more does

not help the application itself.

2. The total number of packets received at receiver is similar but the goodput can be signi�cantly

di�erent depending on the presence of goodput control mechanisms at the sender. Further, for the

same number of received packets, the adaptive application sends a lot more packets, which would

choke other TCP 
ows (the rate control algorithm used in goodput control is TCP friendly

[5]).

From Figure 7, we see two results:
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size of 1000 bytes. In the other words, the traÆc is about 3.6Mbps. We send this traÆc over the topology

as shown in Figures 4. The bottleneck bandwidth is 55Mbps with latency 30ms. There are one Pareto

and one Exponential ON/OFF source among 20 senders. The mean for both the ON and OFF period are

10ms. During the ON period, CBR with rate 5Mbps is sent.

We measure the mean and variance of PSNR over 18 senders/receiver pairs. In Figure 8.a, it demostrates

the perfect world with smart transport and priority network. In Figure 8.b, we do not assume network

has priority drop and we show slightly quality degradation for 0.7db. In Figures 8.c, the average PSNR is

lower for 1.7% because the deadline drop does not delete the deadline-violated frames in order to save

bandwidth for other packets in the bu�er, ie. the anticipated drop. This further delays the packets in the

sender bu�er and reduces usefulness of received frame. In Figures 8.d, except that the PSNR is lower for

2.7%, there is another important source for the quality degradation. The di�erence in PSNR for any two

consecutive frames is much higher because there is no priority drop to remove less important data to

make room for higher utility packets. Therefore, users will perceive jittery quality even receivers receive

the same amount of packets. This hehavior can also be characterized quantitatively by the variance of

the PSNR as well. The variance increases from 51.1% between case b and d. Finally, in Figure 8.e,

without smart transport and network support, the quality is dramatically degraded. The PSNR drops

from 24.056 to 22.830 while the variance incresaes from 1.891 to 3.884. Note that in all 5 examples shown

here, the network rate stay approximate the same. This validate the arguments that congestion control is

of the interest to the network but it does not optimize the application goodput.

In Figure 8.f, we use the MPEG trace from Bellcore. The sequence consists 12 frames in one GOP with

the 240X352 (Luminance - Y) and 120X176 (Crominance - U & V). The frame rate is 24 frames per

second. We again show the �ve scenarios as that in MPJPEG case except that we use the useful frame as

a metrics to characterize the quality. In MPJPEG, there is no inter-frame dependency. The quality is

purely depending on the packets received for that frame. Showing quality by PSNR can best represent

the perceived quality.

In contrast, in MPEG, inter-frame dependency plays such an important role in the perceived quality.

Thus, \number of useful frames received" captures perfectly the utility and dependency in MPEG

streams. As shown in Figure 8.f, between bar (1) and bar (2), the useful frame decreases slightly(3.31%)

from perfect case to goodput control case. However, there is literally no di�erence in received I and P

frames. In bar (5), useful frames drop dramatically. Especially, number of I frames received drop more

than 50% that lead to poor quality.

4.3 Simulation-based Evaluation of Goodput Control

In Section 4.3.1 we observe the impact of priority drop as a function of the sender bu�er for a

heterogeneous stream with no anticipated deadline drops. In Section 4.3.2 we observe the impact of

anticipated deadline drop as a function of the sender bu�er for a heterogeneous stream with deadlines,

and understand the relationship between priority drop, deadline drop, and bu�er size. In Section 4.3.4 we

observe the impact of the accuracy of round trip time estimation on deadline violation. In Section 4.3.5

we observe the impact of router parameters on end-to-end goodput control.

For the simulations in this section, we use the topology, as shown in Figures 4. The bottleneck link speed

is 20Mbps with delay 100ms. All the peripheral links have 10Mbps speed and 2ms delay in order to avoid

the multi-hop behavior [11]. The bu�er at SW1 for all experiments is 500 packets except when otherwise

mentioned. All the 20 application senders send MPEG traÆc at constant bit rate with 16 frames per

group of picture (GOP). Each GOP has one I frame, three P frames, and 12 B frames with one packet

per frame. P frames depend on preceding I frames while B frames depend on preceding and following non

B frames. The aggregate rate for each sender is 1.2Mbps, except when otherwise stated. The results we

show in this session use an assigned deadline of 3 seconds. We have also performed a series of tests with

deadlines of 5, 7, and 9 seconds, and GOP of 3, 6, 12 frames. Since the results are qualitatively similar,
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we only present the case where the deadline is 3 seconds, and GOP is 16 frames. The rate control

mechanism is RAP.

4.3.1 Impact of Bu�er Size on Packet Dropping
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Figure 9: Drops at sender: (a) Tail (b) Head (c) Priority

When there is a mismatch between the application sending rate and the connection sending rate, the

bu�er at the sender starts to get backlogged. Once the sender bu�er is full, we consider three

mechanisms for handling incoming packets: (a) head drop, (b) tail drop, and (c) priority drop. If the

sender bu�er is small, the packet dropping mechanisms described above will kick in. On the other hand,

if the sender bu�er is large, then packets that violate their deadline will be discarded via deadline drop.

Figure 9 shows the threshold value after which deadline drop starts to dominate the total number of

dropped packets. It turns out that the threshold value is approximately equal to the \deadline

bandwidth" product, which is 450 packets in the example. Note that the total number of packets

dropped is the same, as seen from Figure 9 { it is only the component dropping mechanism that

contributes to the drops that changes as the bu�er size increases.

4.3.2 Priority versus Head versus Tail Drop

For the same example, Figures 9 show the impact of three candidate packet dropping mechanisms { head

drop, tail drop, and priority drop { as a function of sender bu�er size. For large bu�er sizes, the dropping

mechanism does not matter because deadline drops predominate. However, for small bu�er sizes, we see

two important e�ects: (a) from Figure 9.a, tail drop causes more deadline violations because it deletes

packets from the tail of the queue rather than the head, where is where the deadline violations are taking

place; (b) head drop and priority drop show similar dropping patterns in Figure 9.b/c, but looking at

Figure 10 shows that priority drop signi�cantly improves the perceived goodput at the receiver. This is

because priority drop preferentially protects higher priority frames, on which subsequent lower priority

frames may depend.

In Figure 10, the useful frames for head/tail and deadline drops are similar. With priority drop being part

of the goodput control module, it increases the utility when bu�er is smaller than 450. Note that deadline

drop itself does not necessary increase the quality at the receiver. The reason is that when deadline drop

really kicks in, it basically deletes all packets violating deadline without knowing the priority and

dependency of the frames. This motivates us to include the anticipated deadline drop in order to improve

the quality when bu�er is greater than 450(as shown on the right-top of Figure 10 marked as goodput

control). The arguments are simular to congestion avoidence case, we need to use anticipated deadline

drop to avoid goodput control module to always operate at the rigion that only deadline drop is in e�ect.
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4.3.3 Impact of Deadline Dropping
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Figure 11: (a) Sender : all dropping mechanisms have similar behavior. (b) Receiver : deadline violation

discards 5 times more packets than necessary. Tail drop does not remove packets that are closer to their

deadlines. (c) Deadline drop will keep useful frame stay at 5700 frames for tail drop and after bu�er is

bigger than 375.

In this section, we disable the deadline drop at the sender and show how many packets that will miss

deadline at the receiver. In Figure 11.a, it shows the drops in the sender while the sum of Figure 11.b

and c are the total amount of packets that reach the receiver. As the sender bu�er size increases, a rate

mismatch between the application and the sender may cause the sender bu�er to �ll up. Consequently,

packets may spend a long time in the sender bu�er and violate their deadline. Clearly these packets

should be dropped since they are anyway useless at the receiver, and may further delay following packets.

This e�ect is illustrated in Figure 11.a. When the bu�er is smaller than 375 packets, all drops still come

from bu�er over
ow. However, because of the absence of deadline dropping, the sender sends packets

that are discarded at the receiver when they arrive, and the receiver actually discards 5 times more

packets than necessary, as shown in Figure 11.b. Consequently, the goodput drops sharply as the bu�er

size increases, as shown in Figure 11.c. Of course, with deadline and anticapted deadline dropping, the

perceived quality will stay high regardless of the bu�er size.
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Figure 13: Deadline violation at receiver v.s.

RTT estimation and sender bu�er size.

4.3.4 Impact of Round Trip Time Estimation on Deadline Drops

When the application hands in a packet to the transport with the assigned deadline V , the e�ective

deadline at sender is V - forward latency. If the link is symmetric and the estimation is accurate, the

forward path latency is half the round trip time. However, we cannot assume symmetric paths, and it is

impossible to estimate one way latencies using only end-to-end feedback (without making restrictive

assumptions such as synchronized clocks, etc.). To be conservative, as shown in Figure 13 and 12, using

90 percent of the srtt to calculate the e�ective deadline can avoid almost all of the deadline violations at

receiver. Of course, the results of this experiment are heavily impacted by our speci�c o�er load and test

scenario. In our deadline estimation mechanisms, we have chosen to be conservative and drop packets

more aggressively as packets near their deadline, since optimistically letting packets go through can not

only lead to delay violations at the receiver, but also propagate the delay violations to subsequent packets

in the stream. This is consistent with the result shown in Section 4.3.3, where the sender conservatively

drops more packets using priority and the the receiver perceives improved quality. In fact, using one srtt

seems to be a good engineering choice.

4.3.5 Impact of the Queue Size in the Routers on End-to-End Goodput Control

(a) Deadline Drop at Sender
v.s. Router Buffer Sizes v.s. Router Buffer Sizes

(b) Priority Drop at Sender
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(a) Total Drop at Sender
v.s. Router Buffer sizes

(b) Deadline Violation at Receiver
v.s. Router Buffer sizes
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Figure 15: Total number of drops at sender and

receiver versus router bu�er size

We now explore the impact of router bu�er sizes on goodput control. Of course, our topology is very
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simple, which limits the conclusions that we can reach from the experiment. When the router bu�er is

very small, bu�er contention will reduce the congestion window, and more packets are dropped at the

sender. In [5], the authors choose the router bu�er space to be four times the delay-bandwidth product of

the bottleneck link. We simulate from 0.2 to 4 times of the delay-bandwidth product and conclude that

goodput control is not particularly sensitive to the size of the bu�er in the routers. In addition, we also

change the bottleneck link delay from 10ms to 200ms (not shown in this paper), and the results con�rm

that goodput control is not very sensitive to the link delay as well. This is because packets are spaced out

at the sender by the rate control mechanism, and the rate control ensures that the sending rate is

matched to the link capacity.

Figure 14.a and b demonstrate the drops because of the deadline and priority drops, and Figure 15.a

shows the their sum. In Figure 15.b, with the bu�er size half of the delay-bandwidth product, receiver

only sees three packets miss their deadline. This is because we select conservative deadline policy at the

sender side, as as mentioned in Section 4.3.4

The interesting observation is that goodput control can improve the performance while at the same time

reducing the programming complexity of applications. However, we caution the reader against assuming

that these improvements come for free: goodput control mechanisms incur computational overhead

during three phases: O(p) overhead during packet enqueueing at the send queue for p priority levels, O(1)

overhead during packet dequeueing at the send queue, and O(np) overhead for the anticipated deadline

recomputation when the connection parameters change by a threshold value. Our ongoing work is

looking into two aspects: (a) studying the impact of the threshold value, and (b) reducing the

computation overhead.

5 Related Work and Summary

In related literature, there have typically been two other ways of supporting such streams: (a) the

application implements all the smarts for rate adaptation, deadline management, priority-based

transmission, etc. on top of a UDP datagram transport protocol, and (b) the application uses a real-time

transport protocol such as RTP or RAP over UDP; the transport provides connection-level rate

adaptation and possibly deadline dropping, while the application provides the mechanisms for

application-level rate adaptation, and priority-based transmission. In this paper, we consider the third

approach, in which the application speci�es the QoS policies for its frames/packets, and the transport

layer provides mechanisms for goodput control and rate control in order to maximize the application

goodput through QoS-aware packet dropping mechanisms at the sender bu�er.

In the �rst approach, the application implements all the smarts for supporting the multimedia stream,

and uses UDP as the transport. Speci�cally, the application must determine the available sending rate,

manage deadlines, send only the highest priority packets that can be sustained at the available rate, and

send complete frames (or throw away partially received frames). The advantage of this approach is that

the application has complete control over what is sent over the network. The disadvantages are that the

sending rate estimation can become quite inaccurate at the user layer, the mechanisms for adaptation

must be replicated for each application, and packets once sent cannot be \recalled" even if they are still

queued at the sender (e.g. even if they have violated their deadline). In fact, writing an eÆcient

multimedia application that adapts e�ectively to network dynamics is a very challenging task. Even

popular publicly disseminated network video players that have been used for a few years exhibit several


aws in their adaptation design [13]. While some of the 
aws are coding related, many of the 
aws -

speci�cally relating to the coarseness of rate adaptation and the violation of deadlines at the receiver -

are inherent limitations of this approach.

In the second approach, applications use transport protocols such as RTP [12] or RAP [5], that are

designed to support real-time multimedia 
ows. In this case, the transport protocol performs the
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connection rate adaptation and allows the application to adapt over longer timescales to long-term rate

(which is desirable to prevent the quality 
uctuation at the application layer), and bu�ers packets due to

the potential mismatch between the application sending rate and the connection sending rate. Among

related work, most multimedia transport protocols provide rate adaptation and bu�ering, but not

priority dropping and deadline dropping. The problem with this approach is that in the absence of

deadline dropping and priority dropping, once the application has sent packets for transmission, it cannot

\recall" them, and due to the bu�ering in the transport layer (and coarser rate adaptation in the

application), this problem is more pronounced than in the previous approach. Our experience has been

that while the rate adaptation mechanisms of RAP in particular, and multimedia transport protocols in

general, can improve the throughput of the multimedia stream, they still do not improve the goodput as

much because of deadline violations, partial frame delivery (which are discarded at the receiver), and

delivery of low priority frames without the deliver high priority frames on which they depend.

The problems with the �rst two approaches motivate the need for goodput control. Basically, we see from

the second approach that it is a good thing to perform rate adaptation at two levels { the transport

adapts the connection sending rate to short-term variations in the network resources while the

application adapts the application-sending rate only to long-term variations in the network resources.

However, in addition to the issue of rate adaptation, which answers the question of \how much to send",

there is also the critical issue of \what to send". The shortcomings of the �rst two approaches can be

directly traced to the fact that the sender sent packets that were useless at the receiver, thereby wasting

the connection capacity, and possibly further delaying other packets. This motivates a close coupling

between rate control and goodput control at the transport layer.

An interesting point in the paper is the argument that goodput control can be achieved through

QoS-aware packet dropping in the sender bu�er. While we did not make the point explicitly in the paper,

our ongoing work seeks to formally show that smart packet dropping is necessary and suÆcient to achieve

goodput control.

(We will explode the tradeo�s between transport layer and middleware centric goodput control

mechanisms in the �nal paper).
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